skip to main content


Search for: All records

Creators/Authors contains: "Khan, Omer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modern network-on-chip (NoC) hardware is an emerging target for side-channel security attacks. A recent work implemented and characterized timing-based software side-channel attacks that target NoC hardware on a real multicore machine. This article studies the impact of system noise on prior attack setups and shows that high noise is sufficient to defeat the attacker. We propose an information theory-based attack setup that uses repetition codes and differential signaling techniques to de-noise the unwanted noise from the NoC channel to successfully implement a practical covert-communication attack on a real multicore machine. The evaluation demonstrates an attack efficacy of 97%, 88%, and 78% under low, medium, and high external noise, respectively. Our attack characterization reveals that noise-based mitigation schemes are inadequate to prevent practical covert communication, and thus isolation-based mitigation schemes must be considered to ensure strong security. Isolation-based schemes are shown to mitigate timing-based side-channel attacks. However, their impact on the performance of real-world security critical workloads is not well understood in the literature. This article evaluates the performance implications of state-of-the-art spatial and temporal isolation schemes. The performance impact is shown to range from 2–3% for a set of graph and machine learning workloads, thus making isolation-based mitigations practical. 
    more » « less
    Free, publicly-accessible full text available July 31, 2024
  2. Free, publicly-accessible full text available June 29, 2024
  3. With the ever-increasing virtualization of software and hardware, the privacy of user-sensitive data is a fundamental concern in computation outsourcing. Secure processors enable a trusted execution environment to guarantee security properties based on the principles of isolation, sealing, and integrity. However, the shared hardware resources within the microarchitecture are increasingly being used by co-located adversarial software to create timing-based side-channel attacks. State-of-the-art secure processors implement the strong isolation primitive to enable non-interference for shared hardware, but suffer from frequent state purging and resource utilization overheads, leading to degraded performance. This paper proposes ASM , an adaptive secure multicore architecture that enables a reconfigurable, yet strongly isolated execution environment. For outsourced security-critical processes, the proposed security kernel and hardware extensions allow either a given process to execute using all available cores, or co-execute multiple processes on strongly isolated clusters of cores. This spatio-temporal execution environment is configured based on resource demands of processes, such that the secure processor mitigates state purging overheads and maximizes hardware resource utilization. 
    more » « less